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Fig. 4—Parameters of an inductive post
in WR-187 waveguide.

where w and 1 are the amplitude and ~eriod
shown in Fig. 3 Thus,

‘=tan+a ‘1’)
Eq. (16) is a very practical expression,

because plotting errors can be averaged out

by using the ratio of the average amplitude

m to the average period i.
The intrinsic angular lengths, 6’1= 131d1

and f?~=i%dx, are given by

“’=f-:(’-?) ’17)

‘2=‘=:(’-% ’18)
where /3tDo and (3J0 are the coordinates of an
“inside peak, ” such as point @. The correct

point to use is the one having the most
nearly equal values of fI@ and (3?5’. If the
network happens to have bilateral sym-

metry about plane Tfl, B1D6 and /3J0 will be

exactly equal; in general, they will differ by

less than ~/2.
An application for this measurement

arises in the design of filters using thick in-
ductive posts. The impedance behavior
with frequency of a thick post does not
follow that of a narrow iris, and the intrinsic
angular length cannot be computed from the
handbook value of the shunt susceptance. In
Fig. 4 are shown values of o and k derived
from tangent-relation plots of data taken

with centered inductive posts in IVR-187
waveguide at 5.5 Gc. It is interesting that

the sign of o changes at a diameter of ap-
proximately a/6. For posts of larger diame-

ter, dl =d~= O/2d is positive, and directly-
coupled resonator sections (of a cascade-
resonator filter) must be slightly longer than
&o/2.
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Integral Quotient in Measurements

of Ambipolar Diffused Plasma

with TEo1l Cavity

Despite some known exact solutions of
plasma loaded TMoIo cavity, 1,2 the TEOI 1

mode should be used due to measurement-

technical reaons in the case of large electron

densities and considerable losses. a,’ This

communication is connected with the
mathematical treatment of measurement re-

sults in the case of TEOII mode and ambi-
polar diffusion in discharge tube. The treat-
ment is based on SIater’sb expression for dis-
charge admittance and the assumption of
small perturbations, but not on any special
electron theoretically derived plasma con-
ductivity formula.

Owing to the ambipolar diffusion in the
discharge tube, the distribution of electron
density n along the radius r is

n = tzoJo(Z.~OSt’//’o) (1)

where HO is the e!ectrou density at the axis

and rO the inside radius of the discharge

tube. The plasma conductivity is propor-
tional to the electron density and obeys the

same distribution.
Starting from Slater’s discharge ad-

pittance, s the expressions for the real part

a,o and the imaginary part u,O of plasma
conducti~,ity at the axis ran be derived and
are

I

uro = (grwae,/~) Q
(2)

ULII = (—2AU06JQ

where g~ is the discharge conductance, cw the
angular resonant frequency, ACWthe change

of GJOdue to the discharge plasma, co the

dielectric constant of free space, p the factor

depending on coupling between transmission
line and cavity, and Q the quotient of two

volume integrals.
In the case of ambipolar diffusion and

TEOII cavity, after integration with respect
to z and o (in cylindrical coordinates )6 one
has

Q = Q(R/fu) = QI(~)/QdW~o, ~o)

sR
. rJlz(3.832r/R)dr

Q

Lr‘0rJO(2.405r/FJJ12 (3.832 r/R)dF. (3)
0

R is the inner radius of the cavity.
The integration in the numerator of (3)

can be performed simply and one has

QI(~)= ~R’~20(3.832). The values of
Qz(R/ro, ro) at ?, = 1 cm have been computed
on an electronic digital computer. The results
are presented in Table 1. Q2 can be found for
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TABLE I

CONIPUTED VALUES OF DENOMINATOR Qz AT vo = 1 CM
AND INTEGRAL QUOTIENT Q AS FUNCTION OF R/vo,

THE RATIO OF CAVITY RADIUS TO
DISCHARGE TUBE RADIUS

R/YO

3
4
5
6
7
8

1:

— Q,, cmz

0.022358
0.0136SS
0.0091115
0.0064640
0.0048106
0.0037141
0.0029514
0.0024005

Q

32.650
94.805

222.54
451.71
826.14

1397.6
2225.9
337S.8
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Fig. l—The quotient Q of two volume integrals in the
measurement of ambipolar ddlused plasma with
TEm cavity. R IS tbe Inner radius of cavity, n the
inner radius of dLscharge tube.

other values of r~ by noting that it is pro-

portional to the square of ro. The integral
quotient Q is only the function of R/ro and
is presented in Table I and in Fig. 1 for
practical values of the argument R/rO.
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On “Status Report on International

Millimeter Waveguide Flange

Standards’)l

In his communication, Anderson de-
scribed the state of international standard-
ization of millimeter waveguide flanges and
concluded that in the absence of a suitable
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